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Abstract. We study the electronic structure of the GaAs/AlAs Fibonacel superiattice using
a semi-empirical sp®s® tight-binding method. We find that a selfsimilar energy spectrum
can be seen in the band structure, although the energy specirum deperds strongly on
the wavevector parallel to the layers. Furthermore, we find that a localization character

" is enhanced due to the band hybridization, producing a spiky density of siates and a
localization-like cffect of the wavelunctions in the hybridized energy region. The reasons
for the localization-like behaviour are discussed briefly.

1. Introduction

In recent years much attention has been focused on the studies of quasiperiodic
systems. This is due to the critical properties these systems have in their electronic
structures, and due to the surprising discovery in 1984 of Al-Mn alloys with an
icosahedral symmetry diffraction pattern {1, 2]. Among a number of quasiperiodic
models, the Fibonacci system, which is the one-dimensional version of quasicrystals,
has been of much interest as a model of the quasicrystals. This system has been
extensively investigated in the single-band tight-binding limit. Two special cases are
usually considered. The first, known as the on-site model, has all the hopping transfer
interaction ¢;; = ¢ constant and the on-site energies V,, take two values arranged in a
Fibonacci sequence. The second, the transier model, has the on-site energies V; = V'
constant but the hopping transfer interactions ¢,; taking on two values, arranged in a
Fibonacci sequence. In both cases it is known that the energy spectrum is self-similar,
that is, the energy band divides into three subbands, each of which further divides into
three, and so on [3-7), creating a singular continuous energy spectrum which reduces
in the infinite limit to a Cantor-set spectrum with dense energy gaps everywhere &
11]. Another property of the Fibonacci quasicrystal is that the wavefunctions are all
critical irrespective of their energies, in the sense that they are neither extended nor
localized. It should be noted, however, that their decay in the single-band limit is still
slow such that they extend over many sites.

Experimentally, Merlin and coworkers [12, 13] were the first to succeed in grow-
ing a semiconducting Fibonacci superiattice using GaAs and AlAs. X-ray and Raman
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scattering mecasurements have confirmed the quasiperiodic crystal and phonon struc-
ture, More recently, Yamaguchi er af/ [I4] observed a self-similar structure in the
energy spectrum of the Fibonacci superlattice using time-resolved ‘wide-well’ pho-
toluminescence. They have also found that the electron transport properties are
intermediate between those of periodic and random superlattices. Most theoretical
analysis to date has been concentrated on simple single-band models in 1D, and the
effects of the full crystalline structure of GaAs/AlAs on the quasiperiodicity have re-
mained unexpiored. In the present paper we investigate the electronic structures and
localization behaviour of the GaAs/AlAs Fibonacci superlattice using a semi-empirical
sp3s* tight-binding method. This allows us to include simply the effect of the band
hybridization as well as full three-dimensionality.

In the next section the method and the crystal structure of the GaAs/AlAs Fi-
bonacci superlattice will be described. The results on the energy spectrum and the
behaviour of the wavefunctions are presented in section 3. The interplay between
the band hybridization and the long-range quasiperiodicity is further investigated nu-
mericaily by a two-band tight-binding model in section 4. Finally we summarize the
results in section 3.

2. Method

The GaAs/AlAs Fibonacci superlattice is constructed by arranging atomic layers of
GaAs and AlAs in a Fibonacci sequence. Since the Fibonacei system is not periodic
we use a rational approximation and consider a finite £, layers, where F, is a
Fibonacei number defined by F, = .+ £, _, with F =1, F, = 2, nis the
generation constant, and we apply penodlc boundary condition. In order that a
long-range quasiperiodicity may be included, we restrict the units of construction of
our system to single monolayers of GaAs and AlAs only. Using periodic boundary
condition, we have calculated the electronic structures up to the 12th generation
which consists of a total of 144 GaAs layers and 89 AlAs layers. In figure 1 we show
the schematic crystal structure of the present Fibonacci superlattice.

The calculation is performed with a semi-empirical tight-binding method. sp3s*
orbitals [15, 16] are used. The atomic state is expressed in the LCAO approximation
as

k("

3
Z *fexp(ik + B )oq(r — R;) 1)

ﬁ\
N\

where o denotes orbital states s, p,, p,, p., s and j, [, N denote the site number, the
band index and the numbcr of atoms in & unit cell respectively. The parameters are
chosen to reproduce the experimentally determined band structures of bulk GaAs and
AlAs. Second-nearest neighbour interactions are also introduced so as to reproduce
the L-point energies. Details of this calculation are given in references [17, 18] The
valence band offset at the I' point is taken to be 0.50 eV. Spin—orbit interaction has
not been included. By diagonalizing the Hamiltonian, we obtain the energy spectrum
and the amplitudes of the wavefunctions.
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Figure 1 Schemalic crystai siruciure of the present Fibonacci superlattice which consists
of monolayer GaAs and monolayer AlAs.

3. Calculated results

Figure 2 shows the calculated band structure of a 12th generation Fibonacei superlat-
tice, The dispersion is shown in a plane perpendicular to the superlattice direction.
As a reference, the positions of the encrgy levels in the bulk GaAs and AlAs are
indicated by arrows on the right-hand side of the figure.

First we examine the valence band, which shows two distinct types of dispersion.
The set which reaches the X point in the diagram has a smaller dispersion and
originates from the heavy hole bands, and the set which extend downwards beyond
the bottom of the diagram originates from the light hole bands. In this calculaticon,
the heavy hole band remains doubly degenerate owing to the lack of spin—orbit
interaction. We can see that the heavy hole band is divided into three subbands
around the I point, as expected for a simple Fibonacci system. The light hole band,
in contrast, is much wider and no characteristic Fibonacci structure is seen. At the X
point, however, the Fibonacci structure collapses into a number of highly degenerate
states. This degeneracy comes {rom a flat encrgy dispersion along the superlattice
direction and suggests that the superlattice X point is special.

As for the conduction band, the states at the X point again are degenerate at a
number of energy levels, with no Fibonaccei structure observable. At the bottom of
the conduction band near the I" point, we can see that the parabolic dispersion of
the GaAs s band is strongly mixed with the flat dispersion of the AlAs p band of the
AlAs bulk X point. As the width of layers decrcases, the GaAs s state is confined
more strongly and its energy increases and merges into the AlAs X-point energy. It
is a feature of ultrathin GaAs/AlAs superlattices that these two bands appear very
near each other at the bottom of the conduction band.

We can see that the conduction band too divides more or less into Fibonacci
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Figure 2. The band structure of the GaAs/AlAs Fibonacci superlattice for the 12th
generation (144 GaAs layers and 89 AlAs layers). The positions of the energy levels in
the bulk GaAs and AlAs are indicated by arrows on the right-hand side.

subbands. Above 3.0 eV this splitting is clearest, with the number of states in each
subband corresponding 10 that expected for a Fibonacci system. At an energy between
2.5 eV and 3.0 eV, however, the dispersion around the superlattice I" point consists
of strongly hybridized GaAs s and AlAs p bands and the Fibonacci structure ¢an no
longer be observed. .

The density of states at the I' point shows the Fibonacci separation more clearly
(see figure 3), than the bandstructure. As stated before, the valence band shows the
self-similar energy spectrum which originates from the heavy-hole band clearly. In
the conduction band, due to strong interband hybridizing, only parts of the subband
structures characteristic of the Fibonacci system can be seen. In the energy region
between 2.5 eV and 3.0 €V, where the s and p bands are most strongly hybridized, a
spiky structure appears and the self-similar structure is destroyed. It should be noted
further that for a different parallel wavevector value the energy distribution will be
different due to the band dispersion paraliel to the layers. Therefore the total density
of states for this system will not show a Cantor-set structure.

The nature of the wavefunction is also of great interest in quasiperiodic systems,
and we investigate this at the [" point for the 12th generation GaAs/AlAs Fibonacci
superlattice composed of 144 GaAs layers and 8 AlAs layers using the inverse
participation ratio (IPR),

1 T2 o
IL= lel = J l o - (2)

Eo) (oo
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Figure 3. The density of states at the T’ point for the I2th generation GaAs/AlAs
Fibonacci superlaitice.

Although in general a more detailed analysis is needed to determine the exact nature
of the wavefunctions, for our present purposc the IPR is sufficient. For a periodic
system, the wavefunction is always extended and the PR approaches zero as the
system size increases. For a strongly localized state, the IPR is constant and large for
all system sizes. In figure 4 we show the IPR versus energy level for each state at the
I' point. We see a number of steep peaks in the energy region between 2.5 eV and
3.0 eV where strong hybridization occurs and the self-similar structure is destroyed,
while for the states in the other<energy regions where the Fibonacci character exists
in the energy spectrum, the IPR takes on an almost uniform and much smaller value.
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Figure 4. The PR for the states at the T" point for the 12th generation GaAs/AlAs
Fibonacci superlattice. In the inset is the IPR for the single-band on-site model of the
12th generation with the parameters VA = 0.2, V¥ = —0.2 and ¢t = 1.0. -

By examining increasingly larger generations, we found in addition that the IPR
for the states in the hybridized energy region varies much less with system size than
the value for the other energy regions. This suggests that the focalization character of
the wavefunction is enhanced by the interband hybridization. We note that in the case
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of a random system, the wavefunctions also show strong localization characters at the
edge of the band and in the hybridized energy region, indicating that the electronic
properties of the Fibonacci system are intermediate between those of the periodic
superlattice and a random superlattice,
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Figure 5. The wavefunciion of the GaAs/AlAs Fibonacci superlattice for the 12th genera-
tion, corresponding to the state having the largest 1PR (@), The insct is the wavefunction
for the state at the botiom of the conduction band ($) (top). The autocorrelation
function corresponding to the stales (@) and (£) (bottom).

The wavefunction for the state with the Jargest IPR is shown in figure 5 (top).
The electron amplitude is clearly concentrated in & quite narrow energy region, with
weak secondary peaks existing far from it. For a comparison, the wavefunction at
the bottom of the conduction band for the same Fibonacci system (at which a strong
localization character would be seen for a random system) is shown in the inset.
These localization characters are consistent with the PR behaviour observed, and in
order to obtain more information we examined the autocorrelation function for these
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two states (see figure 5 (bottom))
QL(L) = (V; ¥, 1)
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e

where the As atom is located at the site number 25 — 1 and the Ga or Al atom is
located at the site number 25. For a periodic system o is constant and for a random
system o scales as e~ %/¢ where £ is the localization length. For a critical wavefunction
the wavefunction decays by some power law. In the case of the Fibonacci superlattice,
the autocorrelation function for the state with the largest IPR decreases rapidly with
L, demonstrating an enhanced localization character. However this wavefunction is
clearly different from that of the random system as the autocorrelation does not show
exponential decay. The large correlation at the distance of the Fibonacci number
is the reflection of the inherent quasiperiodic symmetry in the system and indicates
that phase correlation characteristic of the Fibonacci system is not destroyed by
the hybridization. Thus the wavelunction recmains critical, consistent with the 1D
renormalization group analysis by Chakrabarti er al [19].

gl ”=1 +lesl

4. The two-band model

In the previous section, we found that the localization character of a Fibonacci
system may be enhanced due to interband hybridization effects. In order to clarnify
the situation in the hybridized energy region, we simplify the calculation by restricting
ourselves to a two-band nearest-neighbour tight-binding system, with a Hamiltonian
given by

p=T (0 ) S 2)e o

(iai)

The on-site energies V# and VB are arranged in the Fibonacci sequence and the
transfer interaction between the orbitals on the nearest neighbouring site is taken to
be independent of the atomic species. Therefore this model is an extended version
of the more common single-band on-site model. A schematic diagram for this model
is shown in figure 6.

o

Figure 6. Schematic diagram of the two-band tight-binding model with wo atomic species
arranged in the Fibonacci sequence,
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First we consider the transfer matrix for this two-band system, which may be

expressed as
'I‘nl — ‘Yn ~1 ‘IJn. — q'bn,i
Cor)=(F )Gn) w=() o
Here

. ton £~ V) —tlg(E-V3)) ;z(l 0). (6)

1 .
n_tnizz—ﬁmfz(—le(ﬁ Vi) t(E-V) 01

This 4 x 4 transfer matrix (3) has a similar form o the 2 x 2 transfer matrix of the
single-band on-site model [8];

(wn—i-l) —_ ((E""fn)/i _1) ( wn ) (7)
"'bn - 1 0 e

such that the denominator ¢, f,, — [£;4% in X, acts as an effective hopping transfer
similar to ¢ in the 2 x 2 case. Thus the hopping transfer becomes almost zero when
[1,4] is close to /T ;5. From the band picture this situation corresponds to the
creation of the flat energy dispersion and the increase of the effective mass due to
the band hybridization.

In the case of the 2 x 2 transfer matrix, analytic approaches based on trace maps
are known to be cffective. For example, the trace map at the centre of the spectrum
has 6 cycles [8, 10, 11) and its wavefunction has a multifractal structure [20]. As far
as we know, however, trace map analysis for the present 4 x 4 transfer matrix is not
known. Numerically, we have been unable to locate any limit cycles to an acceptable
degree of accuracy. Furthermore, we have to go back to the Schrodinger equation
in the case of |ty4] = /%] 55. We therclore treat this model numerically with the
direct diagonalization of the Hamiltonian matrix using a rational approximation and
periodic boundary condition as before,

In figure 7 we show the density of states around the two-band crossing energy
region for the periodic, Fibonacci and random systems with 1597 sites (16th genera-
tion) respectively. The parameters used are VA = ~VA = 2.0, VE = -VE = 1.0,
ty, = 1.0, t4, = 1.0 and #,, = 1,; = 1.0. I—lcre |t,a] is chosen as [t,,] = Vit tan
The density of states for the periodic system shows the exisience of the gep caused
by the band hybridization effect. We can see that two Van Hove singularities, charac-
terized as D{E) ~ 1/\/_“ appear on both sides of the gap. For the random system,
there exists a band-tail in the gap rcgion, as expectcd for amorphous materials. The
Fibonacci system, on the other hand, shows a spiky density of states in the gap region
and other subsidary gaps open up due to the long-range quasiperiodicity. The IPR for
the present Fibonacci system is shown in figure 8 (top). We see that in the hybridized
energy region the IPR takes on large values indicating an enchanced localization be-
haviour similar to the result of the full GaAs/AlAs calculation. The dependence of
the IPR on the system size is shown in figure 8 (bottom) with (1) denoting the average
IPR for the states in the energy region from —5.0 to —1.0 and from 1.0 to 5.0 and (2)
denoting the value for the state with the larpest 1PR. For reference we also show the
line of log 1/F, ~ —nlog r, where 7 js the golden mean. This line corresponds to
the value expected for an extended state. We can sec clearly that for case (1) the IPR
falls rapidly with increasing system size, more or less according to the behaviour of an
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Figure 7. The density of states per site in the hybridized energy region for (@) a periodic
system (b) a léth generation Fibonacci system (1597 atoms), and (¢} a random system.
The result for (¢} has been averaged aver 30 samples.

extended state, whilst the value for case (2) is hardly changed. Our numerical results
also show that the strongest localization enhancement is found where [¢,,] = \/T}; 55,
indicating that an almost zero dispersion of the hybridized state on both sides of the
bandgap is essential to the development of the localization character. :

One might understand this behaviour in terms of multiple scattering of a free
electron with wavevector k with effective reciprocal lattice vectors G arising from the
quasiperiodic potential [21]. As the sizc of the system increases, together with the
almost flat energy dispersion near the edge of the bandgap such that the energy E(k)
and E(k--@G) are nearly degenerate for almost all G, the original state strongly mixes
with a large number of other states, which results in the localization-like behaviour
of the wavefunction. 1t is also said that the effective mass becomes very large and so
the states are more localized. It is important to note that the appearance of large,
spiky densities of states and the localization-like behaviour of the states in the gap
region are due to the combined effect of the band hybridization and the long-range
quasiperiodicity.

The autocorrelation function for the state with the largest 1PR versus log, L
is shown in figure 9. We can see that large correlations appear at distances of
L = 75 8, 711, !4 demonstrating that the distance with large autocorrelation
between the sites gets enlarged by a factor of =2, This character is also found for the
wavefunction at the centre of ine band for the single-band model. Morcover, these
two wavefunctions are similar in shape. This suggests that the present wavefunction
for the two-band meodel is not so different from that of the single-band model.



5956

K Hirose et al

<)
&

1

o
s
N

]

I»
>

2,
‘%
¥

o
] | -

Inverse Participation Ratio
o
3

&
o

~3.0 0 3.0 50

logm( LP.R.)
o
e

3 5 7 9 1 1B 15
GENERATION

Figure 8. The inverse participation ratio for a I6th pencration Fibonacci system (top).
The corresponding dependences on the syslem size for (1) the averaged value of the
IPR in the energy region from —5.0 1w =10 and from 1.0 (o 50 and (2) the largest [PR
(bottom). The line 1/Fy is included as reference,

In order to obtain more information on the propertics of this wavefunction, it is
necessary to do the multifractal analysis and to investigate the 4 x 4 transfer matrix.
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Figure 9. The autocorrelation [unction (¥;V¥, ;) for the sale with the largest 1R
versus log, L. The inset shows the amplitude of the corresponding wavefunction.
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5. Conclusions

In summary, we have performed a calculation of the electronic structure of the
GaAs/AlAs Fibonacci superlattice with the sp®s* model with use of a semi-empirical
tight-binding method. We have found that, although the energy spectrum is strongly
dependent on the wavevector perpendicular to the superlattice direction, a self-similar
energy spectrum can be secen both in the valence band and in the conduction band
for a given parallel wavevector. The X point is special in that the Fibonacci struc-
ture collapses there. We have also found that the band hybridization between the s
band of GaAs and the p band of AlAs around the T point in the conduction band
destroys the appearance of a self-similar encrgy spectrum at the energy level between
2.5 eV and 3.0 eV. The wavefunctions corresponding to these states reveal an en-
hanced localization bchaviour, even though the wavefunction remains critical. Such
localization-like behaviour is also seen in the hybridized energy region in a two-band
tight-binding model and may be due to the strong multiple scattering of electrons as
a result of the existence of nearly degenerate states and a long-range quasiperiodic-
ity. The analysis of the wavefunction with the largest IPR shows that the distance of
large autocorrelation between the sites gets enlarged by a factor of 72, This suggests
that the phase correlation characteristic of the Fibonacci system remains and this
wavefunction is related to the band centre state in the single-band model
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