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AbslrecL We study lhe electronic S~NLZUW? of the GaAslAlAs Fibonacci superlattice using 
a semi-empirical sp's' light-binding metliod. We find Uial a self-similar energy specmm 
a n  be seen in the band structure, allhough the energy speclrum depends slrongly on 
the Wavevector parallel to the byen. Furthermore. we find that a localit ion character 
is enhanced due lo tire hand Iiybridiwtion, producing a spihy density of states and a 
locdization4ike effect of the w:,wlunclions in the hybridized energy region. The rea" 
for Ihe localization-like behaviour are discussed kitfly. 

1. Introduction 

In recent years much attention has been focused on the studies of quasiperiodic 
systems. This is due to the critical properties these systems have in their electronic 
structures, and due to the surprising discovery in 1984 of AI-Mn alloys with an 
icosahedral symmetry diffraction pattern 11, 21. Among a number of quasiperiodic 
models, the Fibonacci system, which is the one-dimensional version of quasicrystals, 
has been of much interest as a modcl of the quasicrystals. This system has been 
extensively investigated in the single-band tight-binding limit. Two special cases are 
usually considered. The first, known as thc on-site modcl, has all the hopping transfer 
interaction ttj  = 1 constant and the on-site energies I/, take two values arranged in a 
Fibonacci sequence. The second, the transfer model, has the on-site energies V, = V 
constant but the hopping transfer interactions lij taking on two values, arranged in a 
Fibonacci sequence. In both cases it is h o w n  that the energy spectrum is self4imilar. 
that is, the energy band divides into three subbands, each of which further divides into 
three, and so on [3-71, creating a singular continuous energy spectrum which reduces 
in the infinite limit to a Cantor-set spectrum with dense energy gaps everywhere [8- 
111. Another property of the Fibonacci quasicrystal is that the wavefunctions are all 
critical irrespective of their energies, in the sense that they are neither extended nor 
localized. It should be noted, however, that their decay in the single-band limit is still 
slow such that they extend over many sites. 

Experimentally, Merlin and coworkers [12, 131 were the first to succeed in grow- 
ing a semiconducting Fibonacci superlattice using GaAs and AIAs. X-ray and Raman 
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scattering measurements have confirmed the quasiperiodic crystal and phonon struc- 
ture. More recently, Yamaguchi CI al [la] observed a self-similar structure in the 
energy spectrum of the Fibonacci superlattice using time-resolved %ide-well' pho- 
toluminescence. Thcy have also found that the electron transport properties are 
intermediate between those of periodic and random superlattices. Most theoretical 
analysis to date has been concentrated on simple single-band models in ID, and the 
effects of the full crystalline structure of GaAs/AlAs on the quasiperiodicity have re- 
mained unexplored. In the present paper we investigate the electronic structures and 
localization behaviour of the Ga.As/AIAs Fibonacci superlattice using a semi-empirical 
sp3s' tight-binding method. This allows us to include simply the effect of the band 
hybridization as well as full three-dimensionality. 

In the next section the method and the crystal structure of the GaAs/AIAs Fi- 
bonacci superlattice will be described. The results on the energy spectrum and the 
behaviour of the wavefunctions arc presented in section 3. The interplay between 
the band hybridization and the long-range quasiperiodicity is further investigated nu- 
merically by a two-band tight-binding modcl in section 4. Finally we summarize the 
results in section 5. .. . _  . 

2. Method 

The GaAs/AlAs Fibonacci supcrlattice is constructed by arranging atomic layers of 
GaAs and AlAs in a Fibonacci sequcnce. Since the Fibonacci system is not periodic 
we use a rational approximation and considcr a finite F,, layers, where F,, is a 
Fibonacci number defined by Fn = Fn-, + F,L-? with F, = 1, F2 = 2,  n is the 
generation constant, and we apply periodic boundary condition. In order that a 
long-range quasiperiodicity may be included, we restrict the units of construction of 
our system to single monolayers of GaAs and AlAs only. Using periodic boundary 
condition, we have calculated the electronic structures up to the 12th generation 
which consists of a total of 144 GaAs layers and S9 AlAs layers. In figure 1 we show 
the schematic crystal structure of the present Fibonacci superlattice. 

The calculation is performed with a semi-empirical tight-binding method. sp3s* 
orbitals [U, 161 are used. The atomic state is expresscd in the LCAO approximation 
as 

where 01 denotes orbital states s, p=, py ,  p-, S* and j ,  1,  N denote the site number, the 
band index and the number of atoms in a unit cell respectively. The parameters are 
chosen to reproduce the experimentally dctermined band structures of bulk GaAs and 
AIAs. Second-nearest neighbour interactions are also introduced so as to reproduce 
the L-point energies. Details of this calculation are given in references [17, 181. The 
valence band offset at the r point is takcn to be 0.50 CY Spin-orbit interaction has 
not been included. By diagonalizing the Hamiltonian, we obtain the energy spectrum 
and the amplitudes of the wavefunctions. 
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Figure 1 Schematic crystal SLrucIurc of the present Fibonacci superlattice which consists 
of monolayer GaAs and monolayer A i l s .  

3. Calculated results 

Figure 2 shows the calculated band structure of a 12th generation Fibonacci superlat- 
tice. The dispersion is shown in a plane perpendicular to the superlattice direction. 
As a reference, the positions of thc energy lcvels in the bulk GaAs and AlAs are 
indicated by arrows on the right-hand sidc o l  th? ligure. 

First we examine the valence band, which shows two distinct types of dispersion. 
The set which reaches the X point in the diagram has a smaller dispersion and 
originates from the heavy hole bands, and thc set which extend downwards beyond 
the bottom of the diagram originates from the light hole bands. In this calculation, 
the heavy hole band remains doubly degcnerate owing to the lack of spin-orbit 
interaction. We can see that the heavy hole band is divided into three subbands 
around the r point, as expected for a simple Fibonacci system. The light hole band, 
in contrast, is much wider and no characteristic Fibonacci structure is seen. At the X 
point, however, the Fibonacci structure collapses into a number of highly degenerate 
states. This degeneracy comes Crom a flat energy dispesion along the superlattice 
direction and suggests that the superlattice X point is special. 

As for the conduction band, the states at the X point again are degenerate at a 
number of energy levels, with no Fibonacci structure observable. At the bottom of 
the conduction band near the r point, we can see that the parabolic dispersion of 
the GaAs s band is strongly mixed with the flat dispersion of the AlAs p band of the 
AI& bulk X point. As the width of layers decreases, the GaAs s state is confined 
more strongly and its energy increases and mcrges into the AlAs X-point energy. It 
is a feature of ultrathin GaAs/AIAs superlattices that these WO bands appear very 
near each other at the bottom of the conduction band. 

We can see that the conduction band too divides more or less into Fibonacci 
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r i p r e  L ine mna s~muclurc of the Ga&/AlAs Fibonacci superlattice for the 12lh 
generation (I44 GaAs layers and 89 N A s  layers). The positions o[ the energy levels in 
the bulk GaAs and AlAs are indicaled by a m s  on the righl-hand side. 

subbands. Above 3.0 eV this splitting is clearest, with the number of states in each 
subband corresponding to that expected for a Fibonacci system. At an energy between 
25 eV and 3.0 eV, however, the dispersion around the superlattice r point consists 
of strongly hybridized GaAs s and A l h  p bands and the Fibonacci structure can no 
longer be observed. 

The density of states at the r point shows the Fibonacci separation more clearly 
(see figure 3), than the bandstructure. As Stated before, the mIence band shows the 
self-similar energy spectrum which originates from the heavy-hole band clearly. In 
the conduction band, due to strong interband hybridizing, only parts of the subband 
structures characteristic of the Fibonacci system can be seen. In the energy region 
between 25 eV and 3.0 ev where the s and p bands are most strongly hybridized, a 
spiky structure appears and the self-similar structure is destroyed. It should be noted 
further that for a different parallel wavevector value the energy distribution will be 
different due to the band dispersion pardllel to the layen. Therefore the total density 
of states for this system will not show a Cantor-set structure. 

The nature of the wavefunction is also of great interest in quasiperiodic systems, 
and we investigate this at the r point for the 12th generation GaAs/AlAs Fibonacci 
superlattice composed of 144 GaAs layers and 89 AlAs layers using the inverse 
participation ratio (IPR), 

4 
C"' 

(2) 
I; = ~ 1 1 ~ 1 4  - c ? " ~ c ~ I  l , k l  

(Clw)2 - (E;"" C: lc;Ll'>?' 



Fgure 3. ?he density of states at lhe r p i n t  for the 12th generation GaAslAlAs 
Frbonacci supellaitice. 

Although in general a more detailed analysis is nceded to determine the exact nature 
of the wavefunctiom, for our prescnt purposc the IPR is sulficient. For a periodic 
system, the wavefunction is always extendcd and the IPR approaches zero as the 
system size increases. For a strongly localized state, the IPR is constant and large for 
all system sizes. In figure 4 we show the IPR versus energy level for each state at the 
I? point. We see a number of steep peaks in the energy region between 2.5 eV and 
3.0 eV where strong hybridization occurs and the self-similar structure is destroyed, 
while for the states in the otherenergy regions where the Fibonacci character exists 
in the energy spectrum, the IPR takes on an almost uniform and much smaller value. 

-3.0 -20 -10 0 10 20 3.0 4.0 ! 
ENERGY (eV) 

0 

Figure 4. llle IPR for the Slalcs a1 the f p i n t  for the 12th generation GaAdAlAs 
Fibonacci superlatlice. In llie inscl is tlle IPR tor the single-band on-sile model of the 
12th generation wilh llie paramelen VA = 0.2, VB = -0.2 and t = 1.0.  

. .  
By examining increasingly larger generations, we found in addition that the IPR 

for the states in the hybridized energy region varies much less with system size ttian 
the value for the other energy regions. This suggests that the localization character of 
the wavefunction is enhanced by the interband hybridization. We note that in the case 
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of a random system, the wavefunctions also show strong localization characters at the 
edge of the band and in the hybridized energy region, indicating that the electronic 
properties of the Fibonacci system are intcrmediate bctween those of the periodic 
superlattice and a random superlattice. 
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Figure 5. ?he wavefunction 01 the GaAs/AIAs Fibonacci superlattice for the 12th genera- 
tion, corresponding to the sale having the largesl IPR (U). ?le inset is the wavefunction 
for the gate at the bottom of the mnduction bmd (b) (lop). ?he autocodation 
function mnerponding to the sfales (a) and (6) @attom). 

The wavefunction for the state with the largest IPR is shown in figure 5 (top). 
The electron amplitude is clearly concentrated in a quite narrow energy region, with 
weak secondary peaks existing far from it. For a comparison, the wavefunction at 
the bottom of the conduction band for the same Fibonacci system (at which a strong 
localization character would be Seen for a random system) is shown in the inset. 
These localization characters are consistent with the IPR behaviour observed, and in 
order to obtain more information we examined the autocorrelation function for these 
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two states (see figure 5 (bottom)) 

a m  = P i @ i + L )  

(3) 

where the As atom is located at the site number ? j  - 1 and the Ga or AI atom is 
located at the site number 2j. For a periodic system a is constant and for a random 
system a scales as e-=/( where is the localization length. For a critical wavefunction 
the wavefunction decays by some power law. In the case of the Fibonacci superlattice, 
the autocorrelation function for the state with the largest IPR decreases rapidly with 
L, demonstrating an enhanced localization character. However this wavefunction is 
clearly different from that of the random system as the autocorrelation does not show 
exponential decay. The large correlation at the distance of the Fibonacci number 
is the reflection of the inherent quasiperiodic symmetry in the system and indicates 
that phase correlation characteristic of the Fibonacci system is not destroyed by 
the hybridization. Thus the wavefunction remains critical, consistent with the 1D 
renormalization group analysis by Chakrabarti et a! [19]. 

4. The two-band model 

In the previous section, we found that the localization character of a Fibonacci 
system may be enhanced due to interband hybridization effects. In order to clarify 
the situation in the hybridized energy region, we simplily the calculation by restricting 
ourselves to a two-band nearest-neighbour tight-binding system, with a Hamiltonian 
given by 

The on-site energies VA and VB are arranged in the Fibonacci sequence and the 
transfer interaction between the orbitals on the nearest neighbouring site is taken to 
be independent of the atomic species. Therefore this model is an extended version 
of the more common single-band on-site model. A schematic diagram for this model 
is shown in figure 6. 

. . . 

vz tm 

Figure 6 Schemalic diagram of the two-band light-binding model with two atomic s p i e s  
arranged in the Fibonacci sequence. 
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First we consider the transfer matrix for this two-band system, which may be 
expressed as 

Here 

This 4 x 4 transfer matrix (5) has a similar Corm to the 2 x 2 transfer matrix of the 
single-band on-site model [SI; 

such that the denominator t ,  - I f l ? / ?  in S, acts as an effective hopping transfer 
similar to t in the 2 x 2 case. Thus the hopping transfer bccomes almost zero when 
/ t l , l  is close to G. From thc band picture this situation corresponds to the 
creation of the flat energy dispersion and the incrcase of the effective mass due to 
the band hybridization. 

In the case of the 2 x 2 transCcr matrix, analytic approaches based on trace maps 
are known to be effective. For example, the trace map at the centre of the spectrum 
has 6 cycles [S, 10, 111 and its wavefunction has a multilractal structure [20]. As far 
as wc know, however, trace map analysis for the present 4 x 4 transfer matrix is not 
known. Numerically, we have been unable to locate any limit cycles to an acceptable 
degree of accuracy. Furthermore, we have to go hack to the ghrodinger equation 
in the case of 11,?1 = m. Wc thercfore treat this model numcrically with the 
direct diagonalization of the Hamiltonian matrix using a rationdl approximation and 
pcriodic boundary condition as bcrore. 

In figure 7 we show the density of statcs around the two-band crossing energy 
region for the periodic, Fibonacci and random systems with 1597 sites (16th genera- 
tion) respectively. The parameters used are V,A = -V$ = 2.0, \/B 1 -  - -VB a = 1.0, 
t , ,  = 1.0, t,, = 1.0 and t l a  = t ? ,  = 1.0. Here /tl?( is chosen as / t l , l  = m. 
The density of states for the periodic system shows the existence of the g2p caused 
by the band hybridization effect. We can see that two Van Hove singularities, charac- 
terized as D(E) - l/a, appear on both sides of the gap. For the random system, 
there exists a band-tail in the gap rcgion, as expectcd for amorphous materials. The 
Fibonacci system, on the othct hand, shows a spiky density of states in the gap region 
and other subsidary gaps open up due to the long-range quasiperiodicity. The IPR for 
the present Fibonacci system is shown in figure 8 (top). We see that in the hybridized 
energy region the IPR takes on large values indicating an enchanced localization be- 
haviour similar to the result of the full GaAs/AIAs calculation. The dependence of 
the IPR on the system size is shown in figure 8 (bottom) with (1) denoting the average 
IPR for the States in the energy rcgion from -5.0 to -1.0 and from 1.0 to 5.0 and (2) 
denoting the value for the state with the largest 'IPR. Fbr reference we also show the 
line of log 1/F, - -nlog r ,  whcre r b the golden mean. This line corresponds to 
the value expected for an extended state. We can sec clearly that for case (1) the IPR 
falls rapidly with increasing system size, more or less according to the behaviour of an 
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ENERGY 
Figure I. l he  density of Yaies per sile in iIw liybtillized energy rcgion for (0)  a periodic 
synem (b) a Ihlh generalion Fibonacci syslem (1591 aloms), and (c) a random system. 
The result lor (c )  has kvn averaged wer Y2 samples. 

extended state, whilst the value for case (2) is hardly changed. Our numerical results 
also show that the strongest localization enhanccment is round where lt121 = G, 
indicating that an almost zero dispersion of the hybridized state on both sides of the 
bandgap is essential to the development of the localization character. 

One might understand this behaviour in terms of multiple scattering of a free 
electron with wavevector k with effective reciprocal lattice vectors (6 arising from the 
quasiperiodic potential [21]. As the size of the system increases, together with the 
almost flat energy dispersion near the edge of thc bandgap such that the energy E ( k )  
and E ( k + G )  are nearly degenerate for almost all G, the original state strongly mixes 
with a large number of other states, which rcsulis in the localization-like behaviour 
of the wavefunction. It is also said that the effective mass becomes very large and so 
the states are more localized. It is important to note that the appearance of large, 
spiky densities of states and the localization-like behaviour of the states in the gap 
region are due to the combined effect of the band hybridization and the long-range 
quasiperiod icity. 

The autocorrelation function for thc State with the largest IPR versus log, L 
is shown in figure 9. We can see that large correlations appear at distances of 
L = T ~ ,  T', T i ' ,  T ' ~ ,  demonstrdting that the distance with large autocorrelation 
between the sites gets enlarged by a idctor of rS. This character is also found for the 
wavefunction at the centre of ;ne band for the single-band model. Moreover, these 
two wavefunctions are similar in shape. This suggests that the present wavefunction 
for the two-band model is not so different from that of the single-band model. 
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IPR in the energy region from -5.0 IU -1.0 m d  from 1.0 lo 5.0 and (2) Ihe largest IPR 
(bottom). The line 1 f F,, is included as rrkxence. 

In order to obtain more information on the properties of this wavefunction, it is 
necessary to do the multifractal analysis and to investigate the 4 x 4 transfer matrix. 
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Figure 9. The autocorrelation [unction (Q,Y,+') for h e  SIate with the largest IPR 
M ~ U S  log, L. 'llle inset shows lhc amplitude of Ihe corresponding waveIunclian. 
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5. Conclusions 

In summary, we have pcrformcd a calculation of the electronic structure of the 
GaAsIAIAs Fibonacci supcrlattice with the sp3s’ model with use of a semi-empirical 
tight-binding method. We have found that, although the energy spectrum is strongly 
dependent on the wavevector perpendicular to the superlattice direction, a self-similar 
energy spectrum can be seen both in the valence band and in the conduction band 
for a given parallel wavevector. The X point is special in that the Fibonacci struc- 
ture collapses there. We have also found that the band hyhridization between the s 
band of GaAs and the p band of AlAs around the r point in the conduction band 
destroys the appearance of a self-similar encrgy spectrum at the energy level between 
2.5 eV and 3.0 eV. The wavefunctions corresponding to these states reveal an en- 
hanced localization behaviour, even though the wavefunction remains critical. Such 
localization-like behaviour is also seen in the hybridized energy region in a two-band 
tight-binding model and may be due to the strong multiple scattering of electrons as 
a result of the existence of nearly degenerate states and a long-range quasiperiodie- 
ity. The analysis of the wavefunction with the largest IPR shows that the distance of 
large autocorrelation between the sites gets enlarged by a factor of T ~ .  This suggests 
that the phase correlation characteristic of the Fibonacci system remains and this 
wavefunction is related to the band centrc state in the single-band model. 
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